Articles Tagged with science communication

The webmaster builds character

A physical scientist encounters social media

We mentioned, some weeks ago, that our webmaster had been assigned to develop the Five Colors S&T social media presence. This wasn’t because he’s an expert already, but because he wasn’t; in fact his inclinations tend toward weekends reading eighteenth-century essays by the light of a kerosene lamp. We thought that, apart from the fact that he generally does a decent job of anything, it would be good for him to do something unfamiliar and especially to have contact with people not like him. As Calvin’s dad (from the comic strip Calvin and Hobbes) would say, he’d build character.

Read More

Share Button

Mythology and cosmology

bbcc1Our chief consultant writes:

Science is a part of our culture. It’s not just that the products of science are all around us, in our hands and in our lives; no less, the discoveries of scientists are covered in the mainstream news media (not always well) and the concepts widely known (not always accurately). It’s clear enough by comparing our world with that of other cultures, say in the particular case of astronomy. We have cosmology (the Big Bang and all that); the ancient Greeks, a series of stories about gods and Titans.

Studying humans, even as amateurs, one seeks out similarities across cultures, and so we see cosmology equated to cosmic mythology. This leads to assertions like, “Cosmology is only our way of explaining the universe to ourselves, exactly the same way other cultures use other explanations.” This is just true enough to be seriously misleading.

Read More

Share Button

Are selfies selfish?

A subtle social effect of technology

lensOur photographic consultant was somewhat bemused by the rise of the “selfie,” that picture of one’s self possibly including others, possibly including a situation or location, taken normally with a smart-phone camera and distributed immediately and electronically. Self-portraits are as old as art and pictures of the family in front of the Grand Canyon as old as Kodak Brownies, but the enormous flood of “selfie” shots seems to be a new phenomenon. An older generation is inclined to blame the self-centered Millenials, using the newest of technology mostly in an adolescent game of self-promotion.

We think, however, that the “selfie” instead demonstrates an interesting example of how a simple technological change can result in a social phenomenon. This is not to say that technology is a cause, but it enables unexpected things—when people are included.

Read More

Share Button

How can you tell, if you’re not an expert?(3)

Dueling PhDs

Our chief consultant writes:

gas-tube spectrumWe come to the hardest problem to set a layman: suppose there are two (or more) experts, that is, people who disagree strongly about some scientific or technical question, each of which has some claim to expertise. Call this “dueling PhDs.” You, as a layman, are called upon to decide between them. What do you do?

We assume that the matter is advanced or esoteric enough that there’s no question of you actually checking the math yourself. Also, that it’s not a matter of current research, where the answer really isn’t known. (That excludes, for instance, Stephen Hawking and Roger Penrose disagreeing about the Nature of Space and Time.)

You could try to evaluate the credentials of either side, working out whose PhD is stronger; or take of vote of scientists working on the matter; or, perhaps, decide on the basis of motivation, asking who is funded by whom. Slightly more useful is analyzing the rhetoric, on the assumption that someone with a poor scientific case is more likely to try to cover it with noise. All of these techniques leave us uneasy, and though we have some suggestions on how to use them we prefer a harder, more time-consuming method as a more reliable way of getting at something like the truth.

Read More

Share Button

A Textbook Case

textbook and calculationsOur astronomer writes:

Now and then I come across an interview of some Nobel prize-winning (or otherwise distinguished) scientist with the inevitable question, “What got you started on your path to fame?” Almost always it was an inspiring teacher or mentor, a person who imparted a love of or excitement in doing science. Somewhere in the years between High School and Grad School, between the time when our differences were mostly potential and the time we’re on our way in a particular direction, someone lit a fire. Often there’s a quote something like, “He/She showed me that [insert science here] is more than just a set of results in a dusty textbook, but something that I really enjoyed doing.”

Similarly, in accounts of some part of the history of science it’s almost inevitable that I encounter a sentence like, “so science proceeds in sometimes a roundabout and uncertain fashion, not at all as the textbooks tell you.” Textbooks are not often held up as good examples.

The message, sometimes explicit but often implied, is that our job as teachers and scientists is to inspire and excite. Trying to impart “textbook results” is deprecated. Well, this time I am standing up for the textbook and the type of learning it represents. There is a time when it is just what we should be teaching. We need to ask the question: what are we trying to do? What is the outcome we want in our students?

Read More

Share Button

How can you tell, if you’re not an expert? (2)

How far can you trust a scientist?

 

Astronomy book and page of equationsOur chief consultant writes: It’s time to take up the question again of how a non-expert can evaluate an expert. In a previous post I introduced paradoxers, people from outside the field who claim to have made some highly important advance. Paradoxers are interesting in several ways and we’ll return to them later. Today we consider the case of some undoubted expert, a renowned or at least established scientist, describing something in his or her field. How much of it can you rely on to be true? How far can you actually trust a scientist?

This subversive-looking question occurred to our astronomer a while back. To try to answer it, he looked into the specific case of astronomy over the period 1833-1944, and wound up writing a well-regarded book with his conclusions. It’s 300 pages long, so I’m not going to try to include the whole thing in this post. His depressing conclusion is that even the best and most conscientious scientists may make statements as known fact, that turn out later to be wrong. His encouraging conclusion is that this is very rare, and for almost all scientists almost all the time, their presentations are reliable. In addition, there are a number of clues that help indicate the reliability, or otherwise, of what you’re being told.

Read More

Share Button

Big numbers in science communication

table of astronomical numbersOur astronomer writes: In his book Wind, Sand and Stars, Antoine de Saint Exupéry tells the story of a group of Bedouin from the Sahara brought to metropolitan France. This was in the days of the French colonies in North Africa, and the intent was to impress them with the greatness of the civilization of Europe (or at least its power) so they would stop fighting against it. On their return, they said Paris, iron bridges, locomotives, everything was “very big.” They’d learned that Frenchmen seemed to be satisfied by the phrase and used it to buy some peace. In fact they did not comprehend what their guides had tried to show them.

I find that, in explaining astronomy to the public (including students in introductory classes) there is a temptation to play to the “ooh and ahh factor,” to try to impress one’s audience with big numbers to show how different it is from normal experience. (Sometimes there is the unspoken subtext: “Look at me, how good I am to be able to work with huge numbers!”) But if we are not very careful we may, in the end, only leave the vague impression that astronomy is “very big.”

Read More

Share Button