What’s difficult is not always clear
Humans have accomplished some pretty amazing things, from putting men on the Moon (with old technology!) to sequencing their own heredity. But stubborn problems that look much easier persist.
A complaint regularly heard in the last century went something like, “We can put a man on the Moon, but we can’t cure the common cold!” The implication varied, from the idea that more money and effort should be spent on medicine and less on spectacular engineering, to a Romantic (in the literature sense) celebration of Nature over human hubris. Well, the remnants of the Apollo project are still there and the common cold remains unconquered. Why is something so apparently simple (and which many people would pay much money for) still an outstanding problem?
In part (and this gets into biology, which is not our area of expertise) it’s because this year’s cold is not the same as last year’s cold. The virus mutates at a quick rate, making a moving target; a drug that works for one strain might not affect another. And everyone’s response is different, so what works for one person might not work for another. Biology is complicated! By contrast, we know very well what the Moon is doing, and it can be predicted well ahead of time. I don’t want to belittle the difficulty of the Apollo program; it was an amazing achievement; but it was, by comparison, simple.
Moving (briefly and without equations) into mathematics: as soon as Newton had worked out gravity and calculus, he showed that two bodies in orbit around each other would move in ellipses. It’s a quickly solved problem if you have the math required. In contrast, if you add a third body, it’s impossible to come to an answer in the general case. You’re forced to calculate using step-by-step approximations for each new problem. One apparently simple addition moves the problem into another world of difficulty.
On the other hand, there are tasks that seem very difficult but don’t turn out to be. Moving many-ton stones around the landscape (to make Stonehenge, say), without powered machines or roads, seems impossible. Indeed, some people have thereby concluded that space aliens helped Bronze Age Man construct his monuments. In fact, if you have lots of people working together along with some simple machines (log rollers and the like), plus patience, moving big stones and standing them on end is almost straightforward.
Patience pays off in many ways. The ancient Greeks and Mesopotamians had worked out several astronomical numbers (like the length of the year) to impressive accuracy. How, one asks, could they measure the year to an accuracy of minutes, when there were no clocks? Well, you don’t measure just one year. You measure ten years as well as you can (to within a part of a day) and divide by ten. And if you have records going back a couple of centuries or more, as they did, you can get down to seconds.
Maybe someday we’ll finally conquer the common cold. Will we find out what dark matter is first?